Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Viruses ; 15(1)2022 Dec 24.
Article in English | MEDLINE | ID: covidwho-2241292

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) protein subunit vaccine is one of the mainstream technology platforms for the development of COVID-19 vaccines, and most R&D units use the receptor-binding domain (RBD) or spike (S) protein as the main target antigen. The complexity of vaccine design, sequence, and expression systems makes it urgent to establish common antigen assays to facilitate vaccine development. In this study, we report the development of a double-antibody sandwich enzyme-linked immunosorbent assay (ELISA) to determine the antigen content of SARS-CoV-2 protein subunit vaccines based on the United States Pharmacopeia <1220> and ICH (international conference on harmonization) Q14 and Q2 (R2) requirements. A monoclonal antibody (mAb), 20D8, was identified as the detection antibody based on its high RBD binding activity (EC50 = 8.4 ng/mL), broad-spectrum anti-variant neutralizing activity (EC50: 2.7−9.8 ng/mL for pseudovirus and EC50: 9.6−127 ng/mL for authentic virus), good in vivo protection, and a recognized linear RBD epitope (369−379 aa). A porcine anti-RBD polyclonal antibody was selected as the coating antibody. Assay performance met the requirements of the analytical target profile with an accuracy and precision of ≥90% and adequate specificity. Within the specification range of 70−143%, the method capability index was >0.96; the misjudgment probability was <0.39%. The method successfully detected SARS-CoV-2 protein subunit vaccine antigens (RBD or S protein sequences in Alpha, Beta, Gamma, or Delta variants) obtained from five different manufacturers. Thus, we present a new robust, reliable, and general method for measuring the antigenic content of SARS-CoV-2 protein subunit vaccines. In addition to currently marketed and emergency vaccines, it is suitable for vaccines in development containing antigens derived from pre-Omicron mutant strains.


Subject(s)
COVID-19 Vaccines , COVID-19 , Vaccines, Subunit , Humans , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Enzyme-Linked Immunosorbent Assay , Protein Subunits , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
2.
Electrophoresis ; 42(1-2): 10-18, 2021 01.
Article in English | MEDLINE | ID: covidwho-635371

ABSTRACT

Vaccines against infectious diseases are urgently needed. Therefore, modern analytical method development should be as efficient as possible to speed up vaccine development. The objectives of the study were to identify critical method parameters (CMPs) and to establish a set of steps to efficiently develop and validate a CE-SDS method for vaccine protein analysis based on a commercially available gel buffer. The CMPs were obtained from reviewing the literature and testing the effects of gel buffer dilution. A four-step approach, including two multivariate DoE (design of experiments) steps, was proposed, based on CMPs and was verified by CE-SDS method development for: (i) the determination of influenza group 1 mini-hemagglutinin glycoprotein; and (ii) the determination of polio virus particle proteins from an inactivated polio vaccine (IPV). The CMPs for sample preparation were incubation temperature(s) and time(s), pH, and reagent(s) concentration(s), and the detection wavelength. The effects of gel buffer dilution revealed the CMPs for CE-SDS separation to be the effective length, the gel buffer concentration, and the capillary temperature. The four-step approach based on the CMPs was efficient for the development of the two CE methods. A four-step approach to efficiently develop capillary gel electrophoresis methods for viral vaccine protein analysis was successfully established.


Subject(s)
Electrophoresis, Capillary/methods , Viral Proteins , Viral Vaccines , Research Design , Sodium Dodecyl Sulfate/chemistry , Viral Proteins/analysis , Viral Proteins/chemistry , Viral Vaccines/analysis , Viral Vaccines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL